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Abstract — The “Big Data” term refers to a collection of large datasets that may not be processed using traditional database management 
tools. The Map Reduce programming paradigm used in the context of Big Data, is one of the popular approaches that abstract the 
characterstics of parallel and distributed computing which comes off as a solution to Big Data. Improving performance of Map Reduce is a 
major concern as it affects the energy efficiency. Improving the energy efficiency of Map Reduce will have significant impact on energy 
savings for data centers. There are many parameters that influence the performance of Map Reduce.  We conducted a systematic 
literature review to assess research contributions to Map Reduce. Based on the survey conducted it was observed that various parameters 
like scheduling, resource allocation and data flow have a significant impact on Map Reduce performance. 

Index Terms— Big Data, Data flow, Energy Efficiency, Map Reduce, Performance, Resource Allocation, Scheduling 

 ——————————      ——————————  

1 INTRODUCTION                                                                     

Various companies (ranging in size and computing maturity) 
are adopting Cloud computing technology to perform their 
business processes, mainly driven by the fact that it reduces 
the cost of computing infrastructure deployment and man-
agement. It is also useful to note that the business case for mi-
grating to Cloud computing systems has often centered on the 
cost savings that would arise due to reduced use of energy at a 
client site.  
There is also currently significant interest in performing vari-
ous types of analysis over ‘‘big-data’’ with Cloud-based infra-
structures using Hadoop [1], [ 2]. There are three main things 
in Hadoop development Client machine, Master, Slaves. The 
Master nodes supervise two important aspects of Hadoop: 
storing large amount of data (HDFS), and running parallel 
calculations on all that data (Map Reduce). The Name Node 
manages and organizes data storage capacity (HDFS), while 
the Job Tracker administers and arranges the parallel 
processing of information utilizing Map Reduce. Slave means 
both a Data Node and Task Tracker which is used to commu-
nicate with and accept the command from their master nodes. 
The Task Tracker work under the Data node and job tracker 
works under the Name Node. As the writing procedure, Ha-
doop partitions the data into blocks with a predefined block 
estimate. The blocks are then composed and copied in the 
HDFS. The blocks can be copied various times in view of a 
particular esteem which is set to 3 times by default. The Ma-
pReduce function is distributed file system. Basically a large 
file is distributed into block of identical size and they are split 
across the cluster for storage. In   MapReduce   implementa-
tion there are three  stages: Map, Shuffle, and Reduce . The 

map stage concern as  map  function to all input, it is utilized 
to handle the blocks in the input file that are kept into the PCs 
nearby capacity. All mappers do their work in parallel and 
they can work in parallel and separately to each other. In clus-
ter if one computer fails then result can be recomputed on 
another computer.    
A mapper procedures the substance of a piece line by line, 
translating every line as a key-value match. The real map func-
tion is called separately for each of these sets and makes a self-
assertively expansive file of new key-value sets from it: 
Map (key, value) -> List (key', value') 
After Map function finish its process it will pass the result to 
Shuffle function to arrange the resulting pair with their keys 
then pass it to Reducer as per their keys. The structure ensures 
all sets with a similar key are appointed to a similar reducer. 
Now all pair of key is gathered by reducer gather and creates a 
sorted list from the values. Input for the reduce function is key 
and the sorted list of values. To make a size of list very small, 
reduce function compact the list of values it returns a single 
value as its output. Reduce function creates a list of key-value 
pairs, just like the map function: 
Reduce (key, List (values)) -> List (key', value') 
Hadoop is a framework for data intensive (analysis) applica-
tions on large computing clusters by the use of the 
Map/Reduce paradigm [3]. It has become very popular within 
social media data analysis projects in order to tackle the scala-
bility of analysis required across large data volumes that could 
not be performed with traditional paradigms or technologies. 
Furthermore, MapReduce has also become a useful ben-
chmarking tool [4] due to its high storage, computing power 
and network requirements for comparing the performance of 
various computing architectures.  
Understanding how Map Reduce could be efficiently executed 
across a Cloud environment remains an important challenge. 
The objective of this work is to address this challenge, by de-
termining how data intensive computation could be carried 
out over a Cloud computing environment and what signifi-
cant changes in performance are achieved. 
A systematic survey of various literatures has been conducted 
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and what issues in Map Reduce they cover and techniques 
used by various authors to deal with these issues have been 
orderly listed. Our proposed model has been specified along 
with Hadoop Map Reduce workflow. Conclusion is subse-
quently outlined. 

2 RELATED WORK 
Eugen Feller, Lavanya Ramakrishnan, Christine Morin[5] in 
their work the authors evaluated Hadoop performance in the 
traditional model of collocated data and compute services and 
also impact of separating the services. They found that separa-
tion provides more flexibility in virtualized environment. 
They also conducted energy efficiency evaluation of Hadoop 
and along with many conclusions founded that progress of 
completion associates with power consumption and power 
consumption is heavily application specific. 
S Ibrahim, T Phan, A Carpen-Amarie, H Chihoub, D Moise, G 
Antoniu[6] in their paper, the authors focused on Map Reduce 
processing and investigated the impact of scaling dynamically 
the frequency of compute nodes. They conducted a series of 
experiments to find out the implication of Dynamic Voltage 
and Frequency Scaling (DVFS) settings on power consumption 
in Hadoop Clusters. They enabled various DVFS governers ie: 
performance, ondemand, conservative and userspace and ob-
served noteworthy changes in performance and power con-
sumption across different application. 
Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and Chang-
jun Jiang[7] present a Hadoop job performance model that 
accurately estimates job completion time and further makes 
out the required amount of resources for a job to be completed 
within a deadline. The proposed model employs a novel tech-
nique to estimate the execution time of a job. And a technique 
for resource provisioning to satisfy jobs with deadline re-
quirements.  
Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan, 
Blanca Caminero, Carmen Carrión[8] in their paper have 
measured energy consumption of a number of virtual ma-
chines running the Hadoop system. The objective of this work 
has been to measure and characterize power consumption for 
high throughput workloads (using Hadoop). They concluded 
that there is a non-linear relationship between the number of 
virtual machine, the workloads that these VMs execute and 
the power consumption. They found that deploying 8 or more 
VMs on the same physical machine accounts for the maximum 
power consumption possible for a particular cloud infrastruc-
ture. 
Jacob Leverich, Christos Kozyrakis[9] in their paper presented 
a work on modifying Hadoop to allow downsize of operation-
al clusters. Their findings concluded that running Hadoop 
clusters in fractional configurations can save between 9% and 
50% of energy consumption. 
Rini T. Kaushik and Milind Bhandarkar[10] in their work de-
signed a variant of HDFS called as Green HDFS. It allows for 
scale-down by classifying subset of servers that are not ac-
cessed in past n days. This subset forms a Cold Zone, the 
probability of it being accessed again is lower. This will ensure 
period of idleness in cold zone and allow a large number of 

servers in cold zone to transition to inactive power modes. 
Thus ensuring significant reduction in energy cost of cluster. 
Real life HDFS traces from a Hadoop Cluster at Yahoo shows 
a 26% energy consumption reduction by doing only cold zone 
power management. The savings of $2.4 million annually was 
observed when GreenHDFS technique was applied across all 
Hadoop clusters (amounting to 38000 servers) at Yahoo. 
Yanpei Chen, Archana Ganapathi, Randy H. Katz[11] pro-
posed an analogy of whether to compress or not to compress. 
They developed a decision algorithm that helps Map Reduce 
users to compression. They concluded that using compression 
gives savings of energy upto 60%. 
Xiaoli Wang, Yuping Wang, Yue Cui[12] proposed a novel 
energy aware multi-job scheduling model based on map re-
duce. Firstly, the authors noticed the changes in energy con-
sumption with performance. Then the network bandwidth 
issue was considered and finally the task scheduling strategies 
are considered  by formulating the problem as integer bi-level 
programming model. 
M. Malik, H. Humayoun[13],  In their work, through methodi-
cal investigation of power, performance measurements and 
comprehensive system level analysis, authors demonstrate 
that low power embedded architectures can provide signifi-
cant energy-efficiency for processing big data analytics appli-
cations. 
L Mashayekhy, M M Nejad,  D Grosu, Q Zhang, W Shi[14], in 
their paper the authors proposed a framework for improving 
the energy efficiency of MapReduce applications, while fulfil-
ling the service level agreement (SLA). The authors firstly 
modeled the energy-aware scheduling problem of a single 
MapReduce job as an Integer Program, and developed two 
novel algorithms, that find the allocation of map and reduce 
tasks to the machine slots in order to minimize the energy 
consumed while application execution. The authors per-
formed various experiments and found that with their pro-
posed system the scheduling consumed approximately 40 per-
cent less energy on average than the schedules obtained by a 
common scheduler. 
Z Tang, L Jiang, J Zhou, K Li, K Li[15], the authors focused on 
the point that when there is a large output from map task, the 
performance of MapReduce gets influenced significantly.They 
drew attention that waiting time for reduce tasks increases 
due to the system slot resources waste, they finally proposed 
an optimal reduce scheduling policy for reduce tasks’ start 
times which decides the start time point of each reduce task 
according to each job context dynamically, including the task 
completion time and the size of map output. The experiment 
results illustrated that the reduce completion time is decreased 
sharply. It is also proved that the average response time is 
decreased by 11% to 29% with this algorithm. 
W Yu, Y Wang,  X Que, C Xu[16] in their work the authors 
focused on the shuffling phase that involves globally exchang-
ing the intermediate data generated by the mapping phase. 
They proposed a new scheme of virtual shuffling to enable 
easy data movement and reduce I/O for MapReduce shuf-
fling, thus contributing towards energy efficiency. Their expe-
rimental results showed that virtual shuffling significantly 
speeds up data movement in MapReduce and achieves faster 
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job execution and accounts for about 12% savings in power 
consumption. 
Kumar et al. [17] have proposed a solution for heterogeneous 
environments by using a context-aware scheduler. The author 
designed the system using two key basics firstly, a large per-
centage of MapReduce jobs are run periodically and roughly 
have the same characteristics regarding CPU, network, and 
disk requirements. Second, the nodes in a Hadoop cluster be-
come heterogeneous over time due to failures, when newer 
nodes replace old ones. Thus, the system optimizes the jobs 
using same datasets. 
Chen et al.[18] also came up with an approach for heterogene-
ous environments. They developed a novel algorithm for 
scheduling which aims to improve MapReduce by saving ex-
ecution time and system resources. In MapReduce, slow tasks 
prolong the execution time of an entire job. In heterogeneous 
clusters, nodes take different times to complete the same tasks 
due to their differences in various parameters. The scheduler 
uses historical information of each cluster node to tune para-
meters and discover slow tasks. Thus the scheduler classifies 
slow nodes and launch backup tasks. 
Tian et al.[19] proposed another dynamic scheduler whose 
main goal was to improve the hardware utilization rate when 
different MapReduce workloads run on the cluster. The pro-
posed scheduler distributes workloads into three queues: 
CPU-bound, I/O-bound, and Wait-queue. The authors came 
up with an analytical model to compute and classify the work-
loads at runtime. Firstly, the jobs that arrive are put into the 
waiting queue. Next, the scheduler assigns one Map task to 
every TaskTracker for predicting the job type. This architec-
ture balances the usage of both CPU and disk I/O, improving 
Hadoop throughput by about 30% under heterogeneous 
workloads. 
He et al.[20] propose a new scheduler with the premise that 
local Map tasks are always preferred over non-local Map 
tasks, no matter which job a task belongs to. A marker is used 
to categorize nodes and to ensure each node has a fair chance 
to grab its local tasks. To accomplish this, the scheduler relaxes 
the job order for task scheduling. Doing so, it improves per-
formance by avoiding data transfer in Map tasks, which may 
degrade job execution performance. 
Zhang et al.[21] in his work also deals with the data locality of 
reduce task. The authors propose a two-phase execution en-
gine of Reduce tasks to deal with access delays that may de-
grade system performance. The degradation is related to mas-
sive remote I/O operations while copying intermediate re-
sults. In the designed system’s first phase, the engine first se-
lects the nodes to run Reduce tasks and informs the selected 
nodes to fetch intermediate results for Reduce tasks. In the 
second phase, only the selected nodes allocate computing and 
memory resources to execute the Reduce tasks. 
Zhang et al.[22] propose a scheduling method called next-k-
node scheduling (NKS) that helps in enhancing the data locali-
ty of map tasks. Firstly, the system calculates probability of 
each map task and according to where their data is stored, 
generating low probability for tasks that have its input data 
stored on the next node.  And the schedules the task with 
highest probability, and reserving task with lesser probability 
to nodes holding their input data, this improves data locality. 

Seo et al.[23] present a scheme that can improve the overall 
performance in shared MapReduce by using concepts of pre-
fetching and preshuffling. The prefetching scheme that ex-
ploits data locality, is divided in two steps. First, prefetching 
of data present within a single block this is called intra-block 
prefetching. Second, prefetching of an entire block replica to a 
local rack is done this is called inter-block prefetching. In the 
pre-shuffling scheme that is designed to reduce the network 
overhead required to shuffle key-value pairs, the task schedu-
ler observes the input splits of the Map phase and then pre-
dicts how to partition the key-value pairs while keeping in 
mind the Reducer locations. The expected data are assigned to 
a Map task near the future Reducer before the execution of the 
Mapper.  
Nykiel et al.[24] proposed a module named MRShare. He pro-
posed system transforms a batch of queries into a new batch, 
by merging jobs into groups and evaluating each group as a 
single query. Merging multiple jobs allows the entire batch of 
jobs to be analyzed and this maximizes the degree of resource 
sharing while minimizing the consumption of resources.  
Yu, Yandong Wang and Xinyu Que[25] in their work pro-
posed an implementation called Hadoop-A, an acceleration 
framework that allows plug-in components  to deal with per-
formance issues in various ways. The authors firstly devel-
oped a new merge algorithm that avoids various rounds of 
disk accesses to merge same intermediate data segments that 
comes from the map tasks. Secondly, it delays the reduce tasks 
till all the intermediate data have been merged. The serializa-
tion barrier that occurs due to delayed reduce phase is broken 
by a redesigned pipeline of shuffle, merge, and reduce phase 
for reduce tasks. In this particular pipeline the map tasks map 
the data splits as soon as possible. Finally, the authors pro-
posed an algorithm that merges data without the use of disks. 
This framework speeds up data movement in map reduce and 
doubles throughput of Hadoop and reduces CPU utilization. 
Vernica et al.[26] also describes solutions to improve Hadoop’s 
performance by focusing on the interaction of Mappers, intro-
ducing an asynchronous communication channel between 
Mappers. Using a meta-data store (DMDS), Mappers can post 
metadata about their state and can also update themselves 
about the state of all other Mappers. This makes mappers 
more aware othier environment and results in flexibility and 
adaptivity of Hadoop. 
Ahmad et al.[27] proposed MaRCO (MapReduce with com-
munication overlap), which is directed to the overlapping of 
the Shuffle with the Reduce computation. The proposed sys-
tem takes partial data from map tasks and breaks Reduce task 
into smaller invocations, and applies a final reducing step that 
re-reduces all partial reduce output to produce final output.  
Lin et al.[28] proposed an overlapping model between map 
and shuffle phases. This approach is based on two comple-
mentary scheduling algorithms called MaxSRPT and 
SplitSRPT. While the former, minimizes the average response 
time of the queue, latter addresses the poor performance of 
MaxSRPT when jobs are more unbalanced. 
Ho et al.[29] and Ibrahim et al.[31] focused on improving per-
formance by changing the data flow between Mappers and 
Reducers. As Hadoop uses a many-to-many communication 
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model between Mappers and Reducers. This results in satura-
tion of network bandwidth during the shuffle phase.  
Ho et al.[30] dealt with this problem by modeling the traffic in 
a multiple-racks environment. The authors developed a gree-
dy algorithm to find the optimal solution for the problem.  
Ibrahim et al. address the problem by efficiently partitioning 
the intermediate keys to decrease the amount of shuffled data. 
This guarantees fair distribution of the Reducers’ inputs, im-
proving the overall performance. 
Jiang et al.[31] propose known alternative methods as solu-
tions to tuning MapReduce performance. They enhanced the 
way a reader retrieves data from the storage system with a 
direct I/O support, which outperforms streaming I/O by 10%. 
They implemented an indexing scheme for sorted files, im-
proving the Hadoop performance. Finally, the authors also 
proposed an optimization to the HDFS to deal with small files; 
The approach allows DataNodes to save some metadata of 
small files in their memory, improving performance when 
dealing with small files. 
Hammoud et al.[32] proposed an approach named Center-of-
Gravity Reduce Scheduler (CoGRS). The work designs a Re-
duce task scheduler that is locality aware for saving MapRe-
duce network traffic. The scheduler aim towards decreased 
network traffic, which allows for more Map jobs to co-exist in 
the same system. 
Park et al.[33] proposed a novel approach to virtualization. A 
dynamic virtual machine reconfiguration technique on virtua-
lized cloud environments running Hadoop was developed by 
authors. This techniques improves the overall job throughput 
by improving the input data locality of a virtual MapReduce 
cluster. DRR temporarily increases the number of cores to vir-
tual machines to run local tasks. Scheduling of tasks is also 
done based on data locality, the system also adjusts the com-
puatational capability of virtual nodes.  
 

TABLE 1 
COMPARATIVE ANALYSIS 

 
Parameters 
That Affect 
Performance 
In Map Re-
duce 

Issues Dealt Techniques 
Used 

Scheduling 

 
 
Heterogenity 
 

 
Multi Queue 
Schedulers 

 
Data Locality 

 
Data Locality 
Aware Scheduler 

 
Inter Job Paral-
lelism 

 
Reusing Map 
Reduce Job 
among common 
Data sets 

Data Flow 
 
 
Throughput In-

 
Authors propose 
a full pipeline to 

creased/ Reduce 
CPU Utilization 
 
 

overlap shuffle, 
reduce and 
merge phases. 

 
 
Minimize Aver-
age Response 
time of Queue 
 
 

 
Author proposed 
an overlapping 
model between 
map and shuffle 
phase. 

 
Minimize the 
saturation of 
Network Band-
width due to 
Hadoop all- all 
communication 
model 

Authors alte-
redthe Hadoop 
Map/Reduce 
data 
flow(Modeled 
the traffic in mul-
tiple rack envi-
ronment) 

Resource Al-
location 

Minimize Net-
work Traffic 

Reduce Task 
Scheduler 

 
Overall Job 
Throughput In-
creased due to 
improved data 
locality 
 

Dynamic Virtual 
Reconfiguration 
Technique 

 

3 MAP/REDUCE WORKFLOW IN NATIVE HADOOP 
MapReduce workflow in native Hadoop works as follows: 
Step 1: Client “ A” sends a request to NameNode. The request 
includes the need to copy the data files to DataNodes. 
Step 2: NameNode replays with the IP address of DataNodes.  
Step 3: Client “ A” accesses the raw data for manipulation in 
Hadoop. 
Step 4: Client “A” formats the raw data into HDFS format and 
divides blocks based on the data size. In the above example 
the blocks B1to B4 are distributed among the DataNodes. 
Step 5: Client “A” sends the three copies of each data block to 
different DataNodes. 
Step 6: In this step, client “A” sends a MapReduce job (job1) to 
the JobTracker daemon with the source data file name(s). 
Step 7: JobTracker sends the tasks to all TaskTrackers holding 
the blocks of the data. 
Step 8: Each TaskTracker executes a specific task on each block 
and sends the results back to the JobTracker. 
Step 9: JobTracker sends the final result to Client “A”. If client 
“A” has another job that requires the same datasets it repeats 
the set 6-8. 
Step10: In native Hadoop client “B” with a new MapReduce 
job (job2) will go through step 1-5 even if the datasets are al-
ready available in HDFS. However, if client “B” knows that 
the data exists in HDFS, it will send job2 directly to JobTrack-
er. 
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Step 11: JobTracker sends job2 to all TaskTrackers. 
Step12: TaskTrackers execute the tasks and send the results 
back to the JobTracker. 
Step 13: JobTracker sends the final result to Client “B”. 

4 PROPOSED WORK 
MapReduce workflow in our proposed system has been ex-
plained as: 
Step 1 to Step 8: remain in the same workflow as native Ha-
doop. Except results from the first 7 steps are stored in the 
CJBT. 
Step 9: JobTracker sends the result to Client “A”. In this step, 
NameNode keeps the names of the blocks that produced the 
results in the local lookup table (CJBT) by the Common Job 
Name (Job1) that has common feature as explained above. 
Step 10: Client “B” sends a new MapReduce job “Job2” to the 
JobTracker with the same common job name and same com-
mon feature or super-sequence of “Job1”. 
Step 11: JobTracker sends “job2” to TaskTrackers who hold the 
blocks, which have the first result of the MapReduce “Job1”. 
In this step, the JobTracker starts with checking the CJBT first 
to find if it is a new job which has the same common name 
and common features of any previous ones or not – In this 
case yes. Then the JobTracker sends “Job2” only to those task 
trackers that hold the results of “job1” executed previously. 
We may assume here that the lookup table will be updated 
with more details OR just remain as is because every time we 
have a new job that may carry the same name of “Job1”. 
Step 12: TaskTrackers execute the tasks and send the results 
back to the JobTracker. 
Step 13: JobTracker sends the final result to Client “B”. 

5 CONCLUSION 
In this paper, a systematic literature review has been con-
ducted regarding Map/Reduce performance. The study 
showed that major areas that influence the performance of 
Hadoop Map/Reduce are Scheduling, Data flow, Resource 
Allocation. 
Our paper distinctively signifies the issues that the various 
literature surveys conducted so far have covered and tech-
niques used to achieve an improvement in performance. With 
improved performance, energy efficiency is achieved which 
our proposed model aims to do. Our proposed system uses a 
Common Job Table that saves the execution time by retrieving 
the results of job having common features and name and not 
re-executing them. Thus this system focuses on the Data flow 
aspect of Map/Reduce. 
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