
International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 960
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A Review on Methods to Improve Map Reduce
Performance

Ayesha Saad, M. Akheela Khanum

Abstract — The “Big Data” term refers to a collection of large datasets that may not be processed using traditional database management
tools. The Map Reduce programming paradigm used in the context of Big Data, is one of the popular approaches that abstract the
characterstics of parallel and distributed computing which comes off as a solution to Big Data. Improving performance of Map Reduce is a
major concern as it affects the energy efficiency. Improving the energy efficiency of Map Reduce will have significant impact on energy
savings for data centers. There are many parameters that influence the performance of Map Reduce. We conducted a systematic
literature review to assess research contributions to Map Reduce. Based on the survey conducted it was observed that various parameters
like scheduling, resource allocation and data flow have a significant impact on Map Reduce performance.

Index Terms— Big Data, Data flow, Energy Efficiency, Map Reduce, Performance, Resource Allocation, Scheduling

 —————————— ——————————

1 INTRODUCTION

Various companies (ranging in size and computing maturity)
are adopting Cloud computing technology to perform their
business processes, mainly driven by the fact that it reduces
the cost of computing infrastructure deployment and man-
agement. It is also useful to note that the business case for mi-
grating to Cloud computing systems has often centered on the
cost savings that would arise due to reduced use of energy at a
client site.
There is also currently significant interest in performing vari-
ous types of analysis over ‘‘big-data’’ with Cloud-based infra-
structures using Hadoop [1], [2]. There are three main things
in Hadoop development Client machine, Master, Slaves. The
Master nodes supervise two important aspects of Hadoop:
storing large amount of data (HDFS), and running parallel
calculations on all that data (Map Reduce). The Name Node
manages and organizes data storage capacity (HDFS), while
the Job Tracker administers and arranges the parallel
processing of information utilizing Map Reduce. Slave means
both a Data Node and Task Tracker which is used to commu-
nicate with and accept the command from their master nodes.
The Task Tracker work under the Data node and job tracker
works under the Name Node. As the writing procedure, Ha-
doop partitions the data into blocks with a predefined block
estimate. The blocks are then composed and copied in the
HDFS. The blocks can be copied various times in view of a
particular esteem which is set to 3 times by default. The Ma-
pReduce function is distributed file system. Basically a large
file is distributed into block of identical size and they are split
across the cluster for storage. In MapReduce implementa-
tion there are three stages: Map, Shuffle, and Reduce . The

map stage concern as map function to all input, it is utilized
to handle the blocks in the input file that are kept into the PCs
nearby capacity. All mappers do their work in parallel and
they can work in parallel and separately to each other. In clus-
ter if one computer fails then result can be recomputed on
another computer.
A mapper procedures the substance of a piece line by line,
translating every line as a key-value match. The real map func-
tion is called separately for each of these sets and makes a self-
assertively expansive file of new key-value sets from it:
Map (key, value) -> List (key', value')
After Map function finish its process it will pass the result to
Shuffle function to arrange the resulting pair with their keys
then pass it to Reducer as per their keys. The structure ensures
all sets with a similar key are appointed to a similar reducer.
Now all pair of key is gathered by reducer gather and creates a
sorted list from the values. Input for the reduce function is key
and the sorted list of values. To make a size of list very small,
reduce function compact the list of values it returns a single
value as its output. Reduce function creates a list of key-value
pairs, just like the map function:
Reduce (key, List (values)) -> List (key', value')
Hadoop is a framework for data intensive (analysis) applica-
tions on large computing clusters by the use of the
Map/Reduce paradigm [3]. It has become very popular within
social media data analysis projects in order to tackle the scala-
bility of analysis required across large data volumes that could
not be performed with traditional paradigms or technologies.
Furthermore, MapReduce has also become a useful ben-
chmarking tool [4] due to its high storage, computing power
and network requirements for comparing the performance of
various computing architectures.
Understanding how Map Reduce could be efficiently executed
across a Cloud environment remains an important challenge.
The objective of this work is to address this challenge, by de-
termining how data intensive computation could be carried
out over a Cloud computing environment and what signifi-
cant changes in performance are achieved.
A systematic survey of various literatures has been conducted

————————————————
• Ayesha Saad is currently pursuing masters degree program in Computer

Science in Integral University, India, PH-918009954776. E-mail: ayesha-
saad75@gmail.com

• M.Akheela Khanum is an Associate Professor currently at Department Of
Computer Science and Engineering, Integral University, India, PH-
919651722460. E-mail: akheela@iul.ac.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 961
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

and what issues in Map Reduce they cover and techniques
used by various authors to deal with these issues have been
orderly listed. Our proposed model has been specified along
with Hadoop Map Reduce workflow. Conclusion is subse-
quently outlined.

2 RELATED WORK
Eugen Feller, Lavanya Ramakrishnan, Christine Morin[5] in
their work the authors evaluated Hadoop performance in the
traditional model of collocated data and compute services and
also impact of separating the services. They found that separa-
tion provides more flexibility in virtualized environment.
They also conducted energy efficiency evaluation of Hadoop
and along with many conclusions founded that progress of
completion associates with power consumption and power
consumption is heavily application specific.
S Ibrahim, T Phan, A Carpen-Amarie, H Chihoub, D Moise, G
Antoniu[6] in their paper, the authors focused on Map Reduce
processing and investigated the impact of scaling dynamically
the frequency of compute nodes. They conducted a series of
experiments to find out the implication of Dynamic Voltage
and Frequency Scaling (DVFS) settings on power consumption
in Hadoop Clusters. They enabled various DVFS governers ie:
performance, ondemand, conservative and userspace and ob-
served noteworthy changes in performance and power con-
sumption across different application.
Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and Chang-
jun Jiang[7] present a Hadoop job performance model that
accurately estimates job completion time and further makes
out the required amount of resources for a job to be completed
within a deadline. The proposed model employs a novel tech-
nique to estimate the execution time of a job. And a technique
for resource provisioning to satisfy jobs with deadline re-
quirements.
Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan,
Blanca Caminero, Carmen Carrión[8] in their paper have
measured energy consumption of a number of virtual ma-
chines running the Hadoop system. The objective of this work
has been to measure and characterize power consumption for
high throughput workloads (using Hadoop). They concluded
that there is a non-linear relationship between the number of
virtual machine, the workloads that these VMs execute and
the power consumption. They found that deploying 8 or more
VMs on the same physical machine accounts for the maximum
power consumption possible for a particular cloud infrastruc-
ture.
Jacob Leverich, Christos Kozyrakis[9] in their paper presented
a work on modifying Hadoop to allow downsize of operation-
al clusters. Their findings concluded that running Hadoop
clusters in fractional configurations can save between 9% and
50% of energy consumption.
Rini T. Kaushik and Milind Bhandarkar[10] in their work de-
signed a variant of HDFS called as Green HDFS. It allows for
scale-down by classifying subset of servers that are not ac-
cessed in past n days. This subset forms a Cold Zone, the
probability of it being accessed again is lower. This will ensure
period of idleness in cold zone and allow a large number of

servers in cold zone to transition to inactive power modes.
Thus ensuring significant reduction in energy cost of cluster.
Real life HDFS traces from a Hadoop Cluster at Yahoo shows
a 26% energy consumption reduction by doing only cold zone
power management. The savings of $2.4 million annually was
observed when GreenHDFS technique was applied across all
Hadoop clusters (amounting to 38000 servers) at Yahoo.
Yanpei Chen, Archana Ganapathi, Randy H. Katz[11] pro-
posed an analogy of whether to compress or not to compress.
They developed a decision algorithm that helps Map Reduce
users to compression. They concluded that using compression
gives savings of energy upto 60%.
Xiaoli Wang, Yuping Wang, Yue Cui[12] proposed a novel
energy aware multi-job scheduling model based on map re-
duce. Firstly, the authors noticed the changes in energy con-
sumption with performance. Then the network bandwidth
issue was considered and finally the task scheduling strategies
are considered by formulating the problem as integer bi-level
programming model.
M. Malik, H. Humayoun[13], In their work, through methodi-
cal investigation of power, performance measurements and
comprehensive system level analysis, authors demonstrate
that low power embedded architectures can provide signifi-
cant energy-efficiency for processing big data analytics appli-
cations.
L Mashayekhy, M M Nejad, D Grosu, Q Zhang, W Shi[14], in
their paper the authors proposed a framework for improving
the energy efficiency of MapReduce applications, while fulfil-
ling the service level agreement (SLA). The authors firstly
modeled the energy-aware scheduling problem of a single
MapReduce job as an Integer Program, and developed two
novel algorithms, that find the allocation of map and reduce
tasks to the machine slots in order to minimize the energy
consumed while application execution. The authors per-
formed various experiments and found that with their pro-
posed system the scheduling consumed approximately 40 per-
cent less energy on average than the schedules obtained by a
common scheduler.
Z Tang, L Jiang, J Zhou, K Li, K Li[15], the authors focused on
the point that when there is a large output from map task, the
performance of MapReduce gets influenced significantly.They
drew attention that waiting time for reduce tasks increases
due to the system slot resources waste, they finally proposed
an optimal reduce scheduling policy for reduce tasks’ start
times which decides the start time point of each reduce task
according to each job context dynamically, including the task
completion time and the size of map output. The experiment
results illustrated that the reduce completion time is decreased
sharply. It is also proved that the average response time is
decreased by 11% to 29% with this algorithm.
W Yu, Y Wang, X Que, C Xu[16] in their work the authors
focused on the shuffling phase that involves globally exchang-
ing the intermediate data generated by the mapping phase.
They proposed a new scheme of virtual shuffling to enable
easy data movement and reduce I/O for MapReduce shuf-
fling, thus contributing towards energy efficiency. Their expe-
rimental results showed that virtual shuffling significantly
speeds up data movement in MapReduce and achieves faster

IJSER

http://www.ijser.org/
http://www.sciencedirect.com/science/article/pii/S0743731515000027
http://www.sciencedirect.com/science/article/pii/S0743731515000027
http://www.sciencedirect.com/science/article/pii/S0743731515000027
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://www.sciencedirect.com/science/article/pii/S0167739X15000060
http://dl.acm.org/author_page.cfm?id=81408597172&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587
http://dl.acm.org/author_page.cfm?id=81100120990&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587
http://dl.acm.org/author_page.cfm?id=81100416511&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lena%20Mashayekhy.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahyar%20Movahed%20Nejad.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahyar%20Movahed%20Nejad.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Quan%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Quan%20Zhang.QT.&newsearch=true
http://www.sciencedirect.com/science/article/pii/S0167739X14001599
http://www.sciencedirect.com/science/article/pii/S0167739X14001599
http://www.sciencedirect.com/science/article/pii/S0167739X14001599
http://www.sciencedirect.com/science/article/pii/S0167739X14001599
http://www.sciencedirect.com/science/article/pii/S0167739X14001599
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Weikuan%20Yu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Weikuan%20Yu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xinyu%20Que.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xinyu%20Que.QT.&newsearch=true

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 962
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

job execution and accounts for about 12% savings in power
consumption.
Kumar et al. [17] have proposed a solution for heterogeneous
environments by using a context-aware scheduler. The author
designed the system using two key basics firstly, a large per-
centage of MapReduce jobs are run periodically and roughly
have the same characteristics regarding CPU, network, and
disk requirements. Second, the nodes in a Hadoop cluster be-
come heterogeneous over time due to failures, when newer
nodes replace old ones. Thus, the system optimizes the jobs
using same datasets.
Chen et al.[18] also came up with an approach for heterogene-
ous environments. They developed a novel algorithm for
scheduling which aims to improve MapReduce by saving ex-
ecution time and system resources. In MapReduce, slow tasks
prolong the execution time of an entire job. In heterogeneous
clusters, nodes take different times to complete the same tasks
due to their differences in various parameters. The scheduler
uses historical information of each cluster node to tune para-
meters and discover slow tasks. Thus the scheduler classifies
slow nodes and launch backup tasks.
Tian et al.[19] proposed another dynamic scheduler whose
main goal was to improve the hardware utilization rate when
different MapReduce workloads run on the cluster. The pro-
posed scheduler distributes workloads into three queues:
CPU-bound, I/O-bound, and Wait-queue. The authors came
up with an analytical model to compute and classify the work-
loads at runtime. Firstly, the jobs that arrive are put into the
waiting queue. Next, the scheduler assigns one Map task to
every TaskTracker for predicting the job type. This architec-
ture balances the usage of both CPU and disk I/O, improving
Hadoop throughput by about 30% under heterogeneous
workloads.
He et al.[20] propose a new scheduler with the premise that
local Map tasks are always preferred over non-local Map
tasks, no matter which job a task belongs to. A marker is used
to categorize nodes and to ensure each node has a fair chance
to grab its local tasks. To accomplish this, the scheduler relaxes
the job order for task scheduling. Doing so, it improves per-
formance by avoiding data transfer in Map tasks, which may
degrade job execution performance.
Zhang et al.[21] in his work also deals with the data locality of
reduce task. The authors propose a two-phase execution en-
gine of Reduce tasks to deal with access delays that may de-
grade system performance. The degradation is related to mas-
sive remote I/O operations while copying intermediate re-
sults. In the designed system’s first phase, the engine first se-
lects the nodes to run Reduce tasks and informs the selected
nodes to fetch intermediate results for Reduce tasks. In the
second phase, only the selected nodes allocate computing and
memory resources to execute the Reduce tasks.
Zhang et al.[22] propose a scheduling method called next-k-
node scheduling (NKS) that helps in enhancing the data locali-
ty of map tasks. Firstly, the system calculates probability of
each map task and according to where their data is stored,
generating low probability for tasks that have its input data
stored on the next node. And the schedules the task with
highest probability, and reserving task with lesser probability
to nodes holding their input data, this improves data locality.

Seo et al.[23] present a scheme that can improve the overall
performance in shared MapReduce by using concepts of pre-
fetching and preshuffling. The prefetching scheme that ex-
ploits data locality, is divided in two steps. First, prefetching
of data present within a single block this is called intra-block
prefetching. Second, prefetching of an entire block replica to a
local rack is done this is called inter-block prefetching. In the
pre-shuffling scheme that is designed to reduce the network
overhead required to shuffle key-value pairs, the task schedu-
ler observes the input splits of the Map phase and then pre-
dicts how to partition the key-value pairs while keeping in
mind the Reducer locations. The expected data are assigned to
a Map task near the future Reducer before the execution of the
Mapper.
Nykiel et al.[24] proposed a module named MRShare. He pro-
posed system transforms a batch of queries into a new batch,
by merging jobs into groups and evaluating each group as a
single query. Merging multiple jobs allows the entire batch of
jobs to be analyzed and this maximizes the degree of resource
sharing while minimizing the consumption of resources.
Yu, Yandong Wang and Xinyu Que[25] in their work pro-
posed an implementation called Hadoop-A, an acceleration
framework that allows plug-in components to deal with per-
formance issues in various ways. The authors firstly devel-
oped a new merge algorithm that avoids various rounds of
disk accesses to merge same intermediate data segments that
comes from the map tasks. Secondly, it delays the reduce tasks
till all the intermediate data have been merged. The serializa-
tion barrier that occurs due to delayed reduce phase is broken
by a redesigned pipeline of shuffle, merge, and reduce phase
for reduce tasks. In this particular pipeline the map tasks map
the data splits as soon as possible. Finally, the authors pro-
posed an algorithm that merges data without the use of disks.
This framework speeds up data movement in map reduce and
doubles throughput of Hadoop and reduces CPU utilization.
Vernica et al.[26] also describes solutions to improve Hadoop’s
performance by focusing on the interaction of Mappers, intro-
ducing an asynchronous communication channel between
Mappers. Using a meta-data store (DMDS), Mappers can post
metadata about their state and can also update themselves
about the state of all other Mappers. This makes mappers
more aware othier environment and results in flexibility and
adaptivity of Hadoop.
Ahmad et al.[27] proposed MaRCO (MapReduce with com-
munication overlap), which is directed to the overlapping of
the Shuffle with the Reduce computation. The proposed sys-
tem takes partial data from map tasks and breaks Reduce task
into smaller invocations, and applies a final reducing step that
re-reduces all partial reduce output to produce final output.
Lin et al.[28] proposed an overlapping model between map
and shuffle phases. This approach is based on two comple-
mentary scheduling algorithms called MaxSRPT and
SplitSRPT. While the former, minimizes the average response
time of the queue, latter addresses the poor performance of
MaxSRPT when jobs are more unbalanced.
Ho et al.[29] and Ibrahim et al.[31] focused on improving per-
formance by changing the data flow between Mappers and
Reducers. As Hadoop uses a many-to-many communication

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 963
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

model between Mappers and Reducers. This results in satura-
tion of network bandwidth during the shuffle phase.
Ho et al.[30] dealt with this problem by modeling the traffic in
a multiple-racks environment. The authors developed a gree-
dy algorithm to find the optimal solution for the problem.
Ibrahim et al. address the problem by efficiently partitioning
the intermediate keys to decrease the amount of shuffled data.
This guarantees fair distribution of the Reducers’ inputs, im-
proving the overall performance.
Jiang et al.[31] propose known alternative methods as solu-
tions to tuning MapReduce performance. They enhanced the
way a reader retrieves data from the storage system with a
direct I/O support, which outperforms streaming I/O by 10%.
They implemented an indexing scheme for sorted files, im-
proving the Hadoop performance. Finally, the authors also
proposed an optimization to the HDFS to deal with small files;
The approach allows DataNodes to save some metadata of
small files in their memory, improving performance when
dealing with small files.
Hammoud et al.[32] proposed an approach named Center-of-
Gravity Reduce Scheduler (CoGRS). The work designs a Re-
duce task scheduler that is locality aware for saving MapRe-
duce network traffic. The scheduler aim towards decreased
network traffic, which allows for more Map jobs to co-exist in
the same system.
Park et al.[33] proposed a novel approach to virtualization. A
dynamic virtual machine reconfiguration technique on virtua-
lized cloud environments running Hadoop was developed by
authors. This techniques improves the overall job throughput
by improving the input data locality of a virtual MapReduce
cluster. DRR temporarily increases the number of cores to vir-
tual machines to run local tasks. Scheduling of tasks is also
done based on data locality, the system also adjusts the com-
puatational capability of virtual nodes.

TABLE 1
COMPARATIVE ANALYSIS

Parameters
That Affect
Performance
In Map Re-
duce

Issues Dealt Techniques
Used

Scheduling

Heterogenity

Multi Queue
Schedulers

Data Locality

Data Locality
Aware Scheduler

Inter Job Paral-
lelism

Reusing Map
Reduce Job
among common
Data sets

Data Flow

Throughput In-

Authors propose
a full pipeline to

creased/ Reduce
CPU Utilization

overlap shuffle,
reduce and
merge phases.

Minimize Aver-
age Response
time of Queue

Author proposed
an overlapping
model between
map and shuffle
phase.

Minimize the
saturation of
Network Band-
width due to
Hadoop all- all
communication
model

Authors alte-
redthe Hadoop
Map/Reduce
data
flow(Modeled
the traffic in mul-
tiple rack envi-
ronment)

Resource Al-
location

Minimize Net-
work Traffic

Reduce Task
Scheduler

Overall Job
Throughput In-
creased due to
improved data
locality

Dynamic Virtual
Reconfiguration
Technique

3 MAP/REDUCE WORKFLOW IN NATIVE HADOOP
MapReduce workflow in native Hadoop works as follows:
Step 1: Client “ A” sends a request to NameNode. The request
includes the need to copy the data files to DataNodes.
Step 2: NameNode replays with the IP address of DataNodes.
Step 3: Client “ A” accesses the raw data for manipulation in
Hadoop.
Step 4: Client “A” formats the raw data into HDFS format and
divides blocks based on the data size. In the above example
the blocks B1to B4 are distributed among the DataNodes.
Step 5: Client “A” sends the three copies of each data block to
different DataNodes.
Step 6: In this step, client “A” sends a MapReduce job (job1) to
the JobTracker daemon with the source data file name(s).
Step 7: JobTracker sends the tasks to all TaskTrackers holding
the blocks of the data.
Step 8: Each TaskTracker executes a specific task on each block
and sends the results back to the JobTracker.
Step 9: JobTracker sends the final result to Client “A”. If client
“A” has another job that requires the same datasets it repeats
the set 6-8.
Step10: In native Hadoop client “B” with a new MapReduce
job (job2) will go through step 1-5 even if the datasets are al-
ready available in HDFS. However, if client “B” knows that
the data exists in HDFS, it will send job2 directly to JobTrack-
er.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 964
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Step 11: JobTracker sends job2 to all TaskTrackers.
Step12: TaskTrackers execute the tasks and send the results
back to the JobTracker.
Step 13: JobTracker sends the final result to Client “B”.

4 PROPOSED WORK
MapReduce workflow in our proposed system has been ex-
plained as:
Step 1 to Step 8: remain in the same workflow as native Ha-
doop. Except results from the first 7 steps are stored in the
CJBT.
Step 9: JobTracker sends the result to Client “A”. In this step,
NameNode keeps the names of the blocks that produced the
results in the local lookup table (CJBT) by the Common Job
Name (Job1) that has common feature as explained above.
Step 10: Client “B” sends a new MapReduce job “Job2” to the
JobTracker with the same common job name and same com-
mon feature or super-sequence of “Job1”.
Step 11: JobTracker sends “job2” to TaskTrackers who hold the
blocks, which have the first result of the MapReduce “Job1”.
In this step, the JobTracker starts with checking the CJBT first
to find if it is a new job which has the same common name
and common features of any previous ones or not – In this
case yes. Then the JobTracker sends “Job2” only to those task
trackers that hold the results of “job1” executed previously.
We may assume here that the lookup table will be updated
with more details OR just remain as is because every time we
have a new job that may carry the same name of “Job1”.
Step 12: TaskTrackers execute the tasks and send the results
back to the JobTracker.
Step 13: JobTracker sends the final result to Client “B”.

5 CONCLUSION
In this paper, a systematic literature review has been con-
ducted regarding Map/Reduce performance. The study
showed that major areas that influence the performance of
Hadoop Map/Reduce are Scheduling, Data flow, Resource
Allocation.
Our paper distinctively signifies the issues that the various
literature surveys conducted so far have covered and tech-
niques used to achieve an improvement in performance. With
improved performance, energy efficiency is achieved which
our proposed model aims to do. Our proposed system uses a
Common Job Table that saves the execution time by retrieving
the results of job having common features and name and not
re-executing them. Thus this system focuses on the Data flow
aspect of Map/Reduce.

REFERENCES
[1] C. Lam, Hadoop in Action, Manning Publications, 2010.
[2] T. White, Hadoop: The Definitive Guide, O’Reilly, 2009.K.
[3] J. Dean, S. Ghemawat, MapReduce: simplified data processing on

large clusters, Commun. ACM 51(1)(2008)107–113.
[4] CloudSuite 1.0, Web page at

http://parsa.epfl.ch/cloudsuite/cloudsuite.html (Last access:
26.06.14).

[5] Eugen Feller,Lavanya Ramakrishnan,Christine Morin,” Performance
and energy efficiency of big data applications in cloud environments:
A Hadoop case study”, Journal of Parallel and Distributed Compu-
ting,Elsevier (2015)

[6] Shadi Ibrahim,Tien-Dat Phan,Alexandra Carpen-Amarie,Houssem-
Eddine Chihoub,Diana Moise,Gabriel Antoniu,” Governing energy
consumption in Hadoop through CPU frequency scaling: An analy-
sis”, Future Generation Computer Systems,Elsevier (2016)

[7] Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and Changjun
Jiang, “Hadoop Performance Modeling for Job Estimation and Re-
source Provisioning”, IEEE Transactions on Parallel and Distributed
Systems.

[8] Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan, Blanca
Caminero, Carmen Carrión,” Analyzing Hadoop power consump-
tion and impact on application QoS”, Future Generation Computer
Systems 55 (2016)

[9] Jacob Leverich, Christos Kozyrakis” On the energy (in)efficiency of
Hadoop clusters”, Volume 44 Issue 1,January2010, Pages61-
65 ,ACM New York, NY, USA

[10] Rini T. Kaushik, Milind Bhandarkar” GreenHDFS: Towards An
Energy-Conserving, Storage-Efficient, Hybrid Hadoop Compute
Cluster”, HotPower'10 Proceedings of the 2010 international confe-
rence on Power aware computing and systems, Article No. 1-9, Van-
couver, BC, Canada

[11] Yanpei Chen, Archana Ganapathi” GreenHDFS: Towards An Ener-
gy-Conserving, Storage-Efficient, Hybrid Hadoop Compute Cluster”,
HotPower'10 Proceedings of the 2010 international conference on
Power aware computing and systems, Article No. 1-9, Vancouver,
BC, Canada

[12] Xiaoli Wang, Yuping Wang, Yue Cui” An energy-aware bi-level op-
timization model for multi-job scheduling problems under cloud
computing”, SpringerLink, January 2016, Volume 20, Issue 1, pp 303–
317

[13] Maria Malik, Houman Homayoun, “Big data on low power cores:
Are low power embedded processors a good fit for the big data
workloads?”, Computer Design (ICCD), 2015 33rd IEEE International
Conference, 2015

[14] Lena Mashayekhy, Daniel Grosu, Quan Zhang, Mahyer Mo-
vahed Nejad, Weisong Shi, “Energy Aware Scheduling of MapRe-
duce Jobs for Big Data Applications”, IEEE Transactions on Parallel
and Distributed Systems, Volume: 26, Issue: 10, Oct. 1 2015

[15] Zhuo Tang, Lingang Jiang, Junging Zhou, Kenli Li, Keqin Li “A self-
adaptive scheduling algorithm for reduce start time”, Future Genera-
tion Computer System, Volumes 43–44, Pages 51–60 (2015)

[16] Weikuan Yu, Yandong Wang, Xinyu Que, Cong Xu “Virtual Shuf-
fling for Efficient Data Movement in MapReduce”, IEEE Transactions
on Computers, Volume: 64, Issue: 2 (2015)

[17] Kumar KA, Konishetty VK, Voruganti K, Rao GVP. CASH: Context
Aware Scheduler for Hadoop. In: Proceedings of the International
Conference on Advances in Computing, Communications and In-
formatics. New York, NY,USA: ACM; 2012. p. 52–61.

[18] Chen Q, Zhang D, Guo M, Deng Q, Guo S. SAMR: A self-adaptive
MapReduce scheduling algorithm in heterogeneous environment. In:
10th International Conference on Computer and Information Tech-
nology. IEEE; 2010 p. 2736–43.

[19] Tian C, Zhou H, He Y, Zha L. A dynamic MapReduce scheduler for
heterogeneous workloads. In: 8th International Conference on Grid
and Cooperative Computing. 2009. p. 218–24.

[20] He C, Lu Y, Swanson D. Matchmaking: A new MapReduce schedul-

IJSER

http://www.ijser.org/
http://parsa.epfl.ch/cloudsuite/cloudsuite.html
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81408597172&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587
http://dl.acm.org/author_page.cfm?id=81100120990&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587
https://link.springer.com/journal/500/20/1/page/1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347055
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347055
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347055
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lena%20Mashayekhy.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Daniel%20Grosu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Daniel%20Grosu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahyar%20Movahed%20Nejad.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Weisong%20Shi.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7244274
http://www.sciencedirect.com/science/journal/0167739X/43/supp/C
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7006872

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 965
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

ing technique. In: Third International Conference on Cloud Compu-
ting Technology and Science. IEEE; 2011. p. 40–7.

[21] Zhang X, Wang G, Yang Z, Ding Y. A two-phase execution engine of
reduce tasks in Hadoop MapReduce. In: International Conference on
Systems and Informatics. 2012. p. 858–64.

[22] Zhang X, Zhong Z, Feng S, Tu B, Fan J. Improving data locality of
MapReduce by scheduling in homogeneous computing environ-
ments. In: 9th International Symposium on Parallel and Distributed
Processing with Applications. IEEE; 2011. p. 120–6. IEEE.

[23] Seo S, Jang I, Woo K, Kim I, Kim JS, Maeng S. HPMR: Prefetching
and preshuffling in shared MapReduce computation environment.
In: International Conference on Cluster Computing and Workshops.
IEEE; 2009. p. 1–8.

[24] Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare:
sharing across multiple queries in MapReduce. Proceedings of the
VLDB Endowment 2010;3(1-2):494–505.

[25] Weikuan Yu,Yandong Wang, and Xinyu Que, “Design and Evalua-
tion of Network-Levitated Merge for Hadoop Acceleration”, IEEE
transactions on parallel and distributed systems, vol. 25, no. 3, March
2014.

[26] Vernica R, Balmin A, Beyer KS, Ercegovac V. Adaptive MapReduce
using situation-aware mappers. In: Proceedings of the 15th Interna-
tional Conference on Extending Database Technology. New York,
NY, USA: ACM; 2012, p. 420–31.

[27] Ahmad F, Lee S, Thottethodi M, Vijaykumar T. Mapreduce with
communication overlap (marco). Journal of Parallel and Distributed
Computing 2013;73(5):608 –20.

[28] Lin M, Zhang L, Wierman A, Tan J. Joint optimization of overlapping
phases in mapreduce. Performance Evaluation 2013;70(10):720 –35.
Proceeding of {IFIP} Performance 2013 Conference.

[29] Ho LY, Wu JJ, Liu P. Optimal algorithms for cross-rack communica-
tion optimization in MapReduce framework. In: International Confe-
rence on Cloud Computing. IEEE; 2011. p. 420–7.

[30] Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L. LEEN: Locality/fairness-
aware key partitioning for MapReduce in the cloud. In: Second In-
ternational Conference on Cloud Computing Technology and
Science. 2010. p. 17–24.

[31] Jiang D, Ooi BC, Shi L, Wu S. The performance of MapReduce: an in-
depth study. Proceedings of the VLDB Endowment 2010;3(1-2):472–
83.

[32] Hammoud M, Rehman M, Sakr M. Center-of-Gravity reduce task
scheduling to lower MapReduce network traffic. In: International
Conference on Cloud Computing. IEEE; 2012. p. 49–58.

[33] Park J, Lee D, Kim B, Huh J, Maeng S. Locality-aware dynamic VM
reconfiguration on MapReduce clouds. In: Proceedings of the 21st in-
ternational symposium on High-Performance Parallel and Distri-
buted Computing. New York, NY, USA: ACM; 2012. p. 27–36. ACM.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Map/Reduce Workflow In Native Hadoop
	4 Proposed Work
	Conclusion
	References

